543. Diameter of Binary Tree

https://leetcode.com/problems/diameter-of-binary-tree/



Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root.
Example:

Given a binary tree
1
         / \
        2   3
       / \     
      4   5    
Return 3, which is the length of the path [4,2,1,3] or [5,2,1,3].
Note: The length of path between two nodes is represented by the number of edges between them.

---
Similar problems
124-binary-tree-maximum-path-sum
----
Intuition
At every recursive call, we want to return the longer path, so it is the best path to be combined with calling function
=> Return max (l, r) + 1 (for the edge to that node)

At every call, track global max path going through the node => l + r
---

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int diameterOfBinaryTree(TreeNode root) {
if (root == null) {
return 0;
}
int[] diameters = helper(root);
return diameters[1] - 1;
}
private int[] helper(TreeNode node) {
if (node == null) {
return new int[] {0, 0};
}
int[] left = helper(node.left);
int[] right = helper(node.right);
int[] ans = new int[2];
ans[0] = 1 + Math.max(left[0], right[0]);
ans[1] = Math.max(1 + left[0] + right[0], Math.max(left[1] ,right[1]));
return ans;
}
}

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
int ans;
public int diameterOfBinaryTree(TreeNode root) {
ans = 0;
if (root == null) {
return ans;
}
dfs(root);
return ans;
}
private int dfs(TreeNode node) {
if (node == null) {
return 0;
}
int l = dfs(node.left);
int r = dfs(node.right);
ans = Math.max(ans, l + r);
return 1 + Math.max(l, r);
}
}

# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def __init__(self):
self.ans = 0
def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int:
if not root:
return ans
self.dfs(root)
return self.ans
def dfs(self, node: Optional[TreeNode]) -> int:
if not node:
return 0
l = self.dfs(node.left)
r = self.dfs(node.right)
self.ans = max(self.ans, l + r)
return 1 + max(l, r)