1143. Longest Common Subsequence

https://leetcode.com/problems/longest-common-subsequence/

Given two strings text1 and text2, return the length of their longest common subsequence.

subsequence of a string is a new string generated from the original string with some characters(can be none) deleted without changing the relative order of the remaining characters. (eg, "ace" is a subsequence of "abcde" while "aec" is not). A common subsequence of two strings is a subsequence that is common to both strings.

 

If there is no common subsequence, return 0.

 

Example 1:

Input: text1 = "abcde", text2 = "ace" 
Output: 3  
Explanation: The longest common subsequence is "ace" and its length is 3.

Example 2:

Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.

Example 3:

Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.

 

Constraints:

  • 1 <= text1.length <= 1000
  • 1 <= text2.length <= 1000
  • The input strings consist of lowercase English characters only.
----
Intuition
Nested loop on both strings
if chars match
    len of LCS = 1 + len of LCS of previous positions of both
else
    len of LCS = max(len of LCS ignoring char from S1, len of LCS ignoring char from S2) 

dp - init to size of S1, S2

Loop from 1 to = S.length()

if (char(i - 1) == char(j - 1)
    dp[i][j] = 1 + dp[i - 1][j - 1]
else
    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])

return dp[S1.len()][S2.len()]
----
Time - O(m * n)
Space - O(m * n)

Can optimize on space with 2 rows, and columns of smaller string
Time - O(m * n)
Space - O(min(m, n))
---
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
// reduce space - min # of columns
if (text2.length() > text1.length()) {
return longestCommonSubsequence(text2, text1);
}
int[][] dp = new int[2][text2.length() + 1];
for (int i = 1; i <= text1.length(); i++) {
for (int j = 1; j <= text2.length(); j++) {
if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
dp[1][j] = 1 + dp[0][j - 1];
} else {
dp[1][j] = Math.max(dp[0][j], dp[1][j - 1]);
}
}
dp[0] = dp[1].clone();
}
return dp[1][text2.length()];
}
}
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int[][] dp = new int[text1.length() + 1][text2.length() + 1];
for (int i = 1; i <= text1.length(); i++) {
for (int j = 1; j <= text2.length(); j++) {
if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
dp[i][j] = 1 + dp[i - 1][j - 1];
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[text1.length()][text2.length()];
}
}